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The paper focuses on resolving the storage issue of correlation matrices generated by kriging surrogate models in the context of 

electromagnetic optimization problems with many design variables and multiple objectives. A hybrid kriging approach that involves a 

direct algorithm in kriging is able to maintain memory requirements at a nearly constant level while offering high efficiency of 

searching for a global optimum. The feasibility and efficiency of this proposed methodology is demonstrated using an example of a 

classic two-variable analytic function and a new proposed benchmark TEAM multi-objective pareto optimization problem. 
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I. INTRODUCTION 

RIGING, as a type of regression model, is able to predict 

a response surface of the objective function through 

exploiting the spatial correlation of data based only on limited 

information. However, it was found that large-scale tasks – 

multi-objective and dealing with many design variables – may 

lead to a 'combinatorial explosion' when all the 

requiredcorrelation matrices are established between the 

sample points and the design vectors. The partitioning scheme 

[1] of the correlation matrices, splitting them into manageable 

sizes, can mitigate to some extent the burden of storing this 

massive amount of data, but sacrifices may need to be made in 

terms of computing efficiency at each iteration to achieve 

more available physical memory. Therefore a more 

efficientmethod capable ofremoving this bottleneck is sought. 

II. HYBRID KRIGING 

The „direct optimization‟ algorithm [2], motivated by a 

modification of Lipschitzian optimization, is able to address 

difficult global optimization problems with bound constraints. 

It only requires a decision based on available information 

where to search next during the optimization process.  

Input the optimal value ofθinto correlation 
model to gain the full-scale EI value.

(The size of correlation matrices increases 
and may exceed the limitation of physical 

memory of the computer)
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Fig. 1. The decision-making chart for normal kriging and hybrid kriging. 

 

The direct algorithm is utilized to assist kriging in finding 

the next sampling point with an optimal value of Expected 

Improvement [3], rather than building the full-field EI over the 

whole design space based on very large correlation matrices. 

This combination of the kriging and the direct algorithm will 

be referred to as „hybrid kriging‟. Along with the increase in 

the number of sampling points selected by kriging throughout 

the process, the amount of data produced by the hybrid kriging 

can remain nearly constant. The optimizing procedures of 

kriging and hybrid kriging are shown in Fig. 1. 

III. NUMERICAL EXPERIMENTS 

To verify the advantages of the proposed hybrid kriging 

methodology, a two-variable analytic test function of Fig. 2, 

with one global minimum and several local minima, has been 

attempted. The hybrid kriging, requiring only 143 iterations to 

locate the global minimum(Fig.3), is twice as efficient as the 

kriging assisted EI that needs 324 iterations [3].  

 

 

 

 

 

 

 

 

 

 

Fig. 1. The two-variable analytic function. 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

Fig. 2. The highly efficient approximation of hybrid kriging. 
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More significantly, however, the peak memory occupied by 

the hybrid kriging at each iteration is maintained at a nearly 

constant level, whereas the memory consumed by the kriging 

with EI increases linearly throughout the optimization process. 

On the other hand, the computing times, simultaneously 

monitored, show similarity for both the hybrid kriging and the 

normal kriging.  
 

 

Fig. 3. Monitoring of peak memory requirements of each iteration 

 

 

Fig. 4. Monitoring of computing times of each iteration. 

IV. BENCHMARK TEAM OPTIMIZATION PROBLEM 

The normal kriging, but with different sampling strategies 

for balancing exploration and exploitation, has been applied to 

the well-known benchmark TEAM 22 and 25 problems [4]. 

The results were good but the memory issue clearly visible, 

making the approach impractical to high-dimensional tasks. 

The hybrid kriging, with the burden of memory accumulation 

removed, has been applied to the proposed new multiobjective 

TEAM benchmark problem with 10 variables, defined as 

follows. An air-cored single-layer solenoid composed of 20 

coils carries a current of density J. The target is to find the 

optimal distribution of the 20 radii 1mm<r(z)<14.5mm, 

˗15mm<z<15mm,for each turn, that yields the prescribed flux 

density𝐵0 𝑧𝑞 = 5𝑚𝑇  in a sub-region˗5mm<z<5mm along 

the solenoid axis. The flux density at the point z along the 

solenoid axis may be expressed as 

𝐵 𝑧 =
𝜇0

2
  

𝐽 𝑟2 𝜉 𝑑𝑟𝑑 𝜉
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𝑟𝑖
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The symmetrically distributed winding is composed of 

nt=20 series-connected turns, hence ten unknown radii may be 

identified as design variables. The flux density is prescribed in 

𝑛𝑝 =41 sample points, evenly distributed along the solenoid 

axis. The two goals are to minimize the discrepancy between 

the prescribed(𝐵0(𝑧𝑞))and the actual field(𝐵(𝑧𝑞 , 𝑟(𝜉𝑙))) along 

the solenoid axis, and to minimize the field sensitivity with 

respect to perturbations in the solenoid radii. A full description 

of the proposed TEAM problem of an air-cored multi-turn 

winding will be provided in the extended paper. 

The objective functions are defined as 

𝑓1 𝑟 = 𝑚𝑎𝑥𝑞=1,𝑛𝑝
 𝐵(𝑧𝑞 , 𝑟(𝜉𝑙)) − 𝐵0(𝑧𝑞) , 𝑙 = 1, 𝑛𝑡(2) 

𝑓2 𝑟 = 𝑚𝑎𝑥𝑙=1,𝑛𝑡
  𝐵+ − 𝐵(𝑟(𝜉𝑙)) +  𝐵 𝑟 𝜉𝑙  − 𝐵−  (3) 

A popular scalarizing method [5] is applied to assist the 

hybrid kriging methodology to combine the multiple 

objectives using a weighted sum(the weights𝜔𝑖are set to 1) 

                       Minimize      𝑓(𝑥) =  𝜔𝑖𝑓𝑖 (𝑥)𝑀
𝑖=1     (4) 

Fig. 5 demonstrates the objective function trajectory of 

sampling points obtained by hybrid kriging. Including one 

randomly chosen initial point, the hybrid kriging required201 

sampling points. The best results in terms of the minima of f1 

and f2 are shown in Fig. 5. This test was terminated manually 

after200 iterations for better clarity; it is expected that 

ultimately the termination criterion will be formulated as 

follows: if the EI of the sampling points declines at a specific 

value, the hybrid kriging predictor will be stopped. 

 
Fig. 5. Objective function trajectory including two goals(𝑓1 𝑟  𝑎𝑛𝑑 𝑓2 𝑟 ). 

V. CONCLUSIONS 

A novel hybrid kriging model has been proposed to resolve 

the storage issue of accumulating data during normal kriging. 

The new algorithm outperforms our previous models in terms 

of optimization efficiency. A benchmark TEAM problem with 

10 design variables for multi-objective pareto optimization of 

electromagnetic devices has been utilized to verify the 

feasibility and efficiency of hybrid kriging. More description 

of the brute-force sampling of the full-scale objective space 

and comparison with other multi-objective optimization 

methods [6] will be provided in the full paper. 
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